Regression: How to use it for causal inference?

Series - Causal Inference
Outline

A key question of the regression theory is, given Y=Xβ+εY=X’\beta + \varepsilon and the estimated coefficients β^=argmin E(YXβ)2\widehat{\beta} =\text{argmin }E(Y-X’\beta)^2, when does β^=β\widehat{\beta}=\beta ?

We first discuss the property of β^\widehat{\beta} when we does not require Y=Xβ+εY=X’\beta+\varepsilon to be well behaved, e.g., XX could be incomplete and hence introduces OVB.

Then we discuss under what conditions does β^=β\widehat{\beta}=\beta.

The following is always true: β^k=Cov(Y,x^k)Var(x^k) \widehat{\beta}_{k} =\frac{Cov(Y,\hat{x}_k)}{Var(\hat{x}_{k})} where x^k\hat{x}_k is the residual of xkx_{k} regressed on all the other covariates.

Particularly, for univariate regression Y=α+βx+εY=\alpha+\beta x+\varepsilon, we have β^=Cov(Y,x)Var(x) \widehat{\beta}=\frac{Cov(Y,x)}{Var(x)} However, we can’t guarantee β^=β\widehat{\beta}=\beta in this general case.

The key condition is E(Xε)=0E(X\varepsilon)=0, that is, ε\varepsilon and XX are uncorrelated.

When E(Xε)=0E(X\varepsilon)=0 is met, not only do we have β^=β\widehat{\beta}=\beta, we can also guarantee:

E(Yε)=0E(εf(X))=0f(X) is arbitrary function of X \begin{align} E(Y\varepsilon)&=0 \\ E(\varepsilon\cdot f(X))&=0 \hspace{2em}\text{f(X) is arbitrary function of X} \\ \end{align} \\

To satisfy E(Xε)=0E(X\varepsilon)=0, we have several choices. If any of the following conditions are met, then we can guarantee E(Xε)=0E(X\varepsilon)=0:

  • No omitted variables
  • Even if we have omitted variables, prove that XX and the omitted variables are uncorrelated.
  • Xβ=E(YX)X’\beta=E(Y|X)
Nickname
Email
Website
0/500
  • OωO
  • |´・ω・)ノ
  • ヾ(≧∇≦*)ゝ
  • (☆ω☆)
  • (╯‵□′)╯︵┴─┴
  •  ̄﹃ ̄
  • (/ω\)
  • ∠( ᐛ 」∠)_
  • (๑•̀ㅁ•́ฅ)
  • →_→
  • ୧(๑•̀⌄•́๑)૭
  • ٩(ˊᗜˋ*)و
  • (ノ°ο°)ノ
  • (´இ皿இ`)
  • ⌇●﹏●⌇
  • (ฅ´ω`ฅ)
  • (╯°A°)╯︵○○○
  • φ( ̄∇ ̄o)
  • ヾ(´・ ・`。)ノ"
  • ( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
  • (ó﹏ò。)
  • Σ(っ °Д °;)っ
  • ( ,,´・ω・)ノ"(´っω・`。)
  • ╮(╯▽╰)╭
  • o(*////▽////*)q
  • >﹏<
  • ( ๑´•ω•) "(ㆆᴗㆆ)
  • 😂
  • 😀
  • 😅
  • 😊
  • 🙂
  • 🙃
  • 😌
  • 😍
  • 😘
  • 😜
  • 😝
  • 😏
  • 😒
  • 🙄
  • 😳
  • 😡
  • 😔
  • 😫
  • 😱
  • 😭
  • 💩
  • 👻
  • 🙌
  • 🖕
  • 👍
  • 👫
  • 👬
  • 👭
  • 🌚
  • 🌝
  • 🙈
  • 💊
  • 😶
  • 🙏
  • 🍦
  • 🍉
  • 😣
  • 颜文字
  • Emoji
  • Bilibili
0 comments
No comment